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Abstract. Real-space rescaling techniques have been employed to obtain recursion relations 
for the parameters characterising the dynamics of both the Heisenberg ferromagnet and 
antiferromagnet on the infinite Vicsek snowflake fractal. We have calculated the associated 
dynamic exponents zF and zA by linearising about the respective fixed points of the 
ferromagnetic/antiferromagnetic recursion relations and find them to satisfy the relation 
zA = zF/2. In addition, using a functional integral method both the ferromagnetic and 
antiferromagnetic density of states p F ( w )  and p A ( w )  have been calculated exactly and the 
resulting spectra were found to satisfy the scaling equation p , ( w )  - bz*-dfp(A,w) near 
their respective fixed points ( a  = A ,  F),  d ,  denoting the fractal dimension. Finally, the 
amplitudes g,(w) appearing in the solution to the scaling equation p , ( w )  - g,(w)wdf’z*-’, 
for the density of states p a ( @ ) ,  were found to be periodic functions of ln(w) with period 
In(A,) where A, is the eigenvalue associated with ferromagnetic (e = F) or antiferromag- 
netic ( a  = A) fixed point. 

1. Introduction 

During the past several years much work has been done on modelling disordered 
systems using geometric shapes of fractal dimension called fractals (Mandelbrot 1982). 
Fractals were introduced within the context of percolation by Stanley (1977) and have 
subsequently served as models for the geometry of such inhomogeneous systems as 
metal-insulator thin films, gels and dilute spin systems. As models of disorder, fractals 
have several favourable attributes, most notably their non-uniformity and self-simi- 
larity, a direct result of the way in which they are constructed. Indeed, it is this same 
intrinsic self-similarity that makes fractals ideally suited to be treated using length 
scaling techniques (Stinchcombe 1985). 

The dynamics of spin systems on fractals involves at least three different dimensions 
for its description: the Euclidean dimension d, the fractal dimension df (Mandelbrot 
1982) and the spectral dimension d ,  (Alexander and Orbach 1982). The latter two 
dimensions characterise how the mass (or number of spins) of the system scales with 
size and how the spectral properties of a given Hamiltonian on this fractal geometry 
scale with frequency or energy. Previous work on exact fractals has focused mainly 
on the Sierpinski gasket and has included studies of the electronic (Tremblay and 
Southern 1983), dynamical (Rammal 1984, Maggs and Stinchcombe 1986, Friedberg 
and Martin 1986) and static (Gefen et al 1981) properties. In this paper we study the 
dynamics of both the Heisenberg ferromagnet and antiferromagnet on the Vicsek 
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snowflake fractal. This fractal was first introduced by Vicsek (1983) as a model for 
aggregation phenomena, but we shall use it to describe the positions of spins in space. 
The Vicsek snowflake is constructed by taking a square of side a and dividing it into 
nine smaller squares of side a/3, four of which are then discarded, the process then 
being repeated in each of the remaining squares ad infinitum. Figure 1 illustrates the 
situation after two levels of decoration. 

Figure 1. The Vicsek snowflake fractal decorated to two levels. 

The motivation for the present work was to investigate whether the relationship 
zA = zF/2, between the dynamic exponents zF and zA for the Heisenberg ferromagnet 
and antiferromagnet, which holds for regular Euclidean lattices, also holds for bond 
diluted, non-uniform lattices. To model the bond dilution we have used the (non- 
uniform) Vicsek fractal which not only allows for both ferromagnetic and antiferromag- 
netic orderings of the spins but also does not suffer from the frustration effects inherent 
in the triangular-shaped Sierpinski gasket fractal. In this paper we present the results 
of a calculation of the critical exponents zF and zA associated with (Heisenberg) 
ferromagnetic and antiferromagnetic spin-wave dynamics on the same fractal lattice. 
From a fixed-point analysis of the recursion relations generated by decimating the 
spin-wave equations of motion we have found these exponents to satisfy the relation 
z A =  2F/2 (Stinchcombe and Maggs 1986) as is found for ordinary Euclidean lattices. 
In addition, using length-scaling techniques combined within a generating function 
formalism we have performed an exact calculation of the density of both ferromagnetic 
and antiferromagnetic spin-wave states pF(  o) and pA( o) respectively and have found 
the resulting spectra to- obey the following basic scaling form: 

& ( U ) -  bz--dfP, (A,4 (1 .1)  

where A, = b’a is the largest eigenvalue associated with the fixed point of the appropriate 
rescaling transformation, b is the rescaling factor ( b  = 3) and z, is the dynamic 
exponent. The spectral dimension d, is then obtained from d, = 2df/ 2,. It must be 
emphasised that the spectral dimension d, is the relevant exponent describing the 
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behaviour of the low-frequency density of states, the fractal dimension dF alone being 
insufficient. 

2. Ferromagnetic spin waves on the Vicsek snowflake 

Consider a system of Heisenberg spins occupying the sites of the Vicsek snowflake 
geometry, each coupled to its nearest and next-nearest neighbours through ferromag- 
netic exchange interactions J1 and J2 respectively. The dynamics of the ith transverse 
spin component S t  is determined by Heisenberg’s equation of motion leading to 

where the sums are taken over both nearest and next-nearest neighbours of i and 
Jv = J,(J2) if j is a nearest (next-nearest) neighbour of i. Although we have focused 
only on spin-wave dynamics, the equation of motion (2.1) is formally identical to that 
which one would obtain if discussing harmonic excitations (phonons), tight-binding 
electrons, random walks and diffusion, and so the results presented here clearly apply 
to a wide range of phenomena. 

In order to maintain the form (2.1) it is necessary to scale the quantity z,J, +z2J2 
independently of J, and J2 (zl and z2 denote the number of nearest and next-nearest 
neighbours respectively) and it is thus convenient to define 

K2 = 251 + J 2  K4 = 4Jl +2J2. (2.2) 

The decimation procedure involves the elimination of the interior twelve sites leading 
to equations for the remaining fours sites which are again of the form (2.1) but with 
renormalised parameters J:, J;, K : ,  and Kk. It should be pointed out that to obtain 
a truly general set of recursion relations it is necessary to include next-nearest neighbour 
interactions from the very outset since the elimination process generates them 
(Niemeijer and van Leeuwen 1976). Such a proliferation of interactions is, however, 
only restricted to second neighbours and does not increase beyond this in contrast to 
the situation that arises when decimation is applied to regular Euclidean lattices in 
two and three dimensions (Southern and Loly 1985). 

Introducing the dimensionless variables X ,  Y,  and 2 defined by 

X = ( K2 - w )/ Jl Y = (K4 - U ) /  Jl Z = J2/ J, (2.3) 

leads to the form of the recursion relations given in appendix 1. This three-parameter 
map possesses six fixed points; however, since we are primarily interested in low- 
frequency excitations only the fixed point ( X * ,  Y*,  Z * )  = (3,6, l), corresponding to 
w = 0, is of relevance. Linearising about this fixed point leads to a largest eigenvalue 
hF of 15 and hence a dynamic exponent zF=1n15/ln3 and a spectral dimension 
d ,  = 2 In 5/ln 15. Guyer (1984) has studied the random walk problem on this same 
fractal and obtained the same result for the spectral dimension, as is to be expected, 
due to the mathematical equivalence between the equations describing ferromagnetic 
spin waves and random walks. Note also that the exponent zF can also be obtained 
from scaling a static quantity such as the conductivity and employing the relation 
z F =  df+ f (Given and Mandelbrot 1983, Christou and Stinchcombe 1985) where df is 
the fractal dimension and f the conductivity exponent ( df = In 5/ln 3, f = 1). 
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The density of states p ( w )  has been calculated using the following (complex) 
generating function 9 ( w )  (Tremblay and Southern 1983, Lavis et a1 1985, Southern 
and Douchant 1985, Ashraff 1986, Maggs and Stinchcombe 1986): 

where 

d ( o ) = ~ ( w + i q - K , ) S f - ~  JijSiSj 
I iJ 

and 

(2.5) 

with K,  = Xj JiJ and the small imaginary part q ensures convergence of the integrals. 
One then obtains p ( w )  using 

where 8 denotes the imaginary part. Our calculation of p ( w )  based on (2.7) involves 
the recursive evaluation of the generating function 9 ( w )  using the technique of the 
real-space renormalisation group ( RSRG). The idea behind such an RSRG calculation 
involves successively performing the Gaussian integrals appearing in (2.4), correspond- 
ing to the elimination of sites. To facilitate this process it is convenient to partition 
the lattice of sites into two sublattices g1 and Z2 corresponding to those sites which 
are to remain and to be eliminated respectively at stage n of the elimination process. 
Then performing the Gaussian integrals over g2 leads to a constant term and a 
generating function 9 describing a system with a fraction of the original degrees of 
freedom, involving an action of the same form as (2.5) but with new parameters K 
and J I  which, when written in the dimensionless form (2.3), take the form given in 
appendix 1. Continuing on in this fashion and accumulating the constant terms 
numerically, arising from the Gaussian integration, at each stage, we are led to 9 ( w )  
and hence pF(w)  via (2.7). We refer the reader to the papers of Tremblay and Southern 
(1983) and Lavis et a1 (1985) for details. Figure 2 shows the ferromagnetic density of 
states pF(w) obtained using the initial conditions J1 = 1, J2 = 0, K 2  = 2, and K4 = 4. The 
spectrum p F ( w )  is obviously highly singular and consists of a series of peaks and gaps, 
whose width is due to the finite imaginary part in the frequency, and which give rise 
to the devil’s staircase form for the integrated density of states N F ( w )  (Rammal 1984). 
Near the fixed point at w = 0 it can be shown from (2.4) that the density of states has 
the scaling form (Niemeijer and van Leeuwen 1976) 

PF(w) - bZF-dfPF(hFw) (2.8) 

which we have verified numerically, using the eigenvalue hF and dynamic exponent 
zF obtained from the fixed-point analysis. The most general solution to (2.8) takes the 
form 

p F ( w )  - (,)(df-ZF)/ZF gF( w 1 (2.9) 

gF(w) = g F ( A F w ) *  (2.10) 

where the amplitude g F ( W )  satisfies 
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w 

Figure 2. The ferromagnetic spin-wave density of states with J ,  = 1 and J ,  = 0. 

Equation (2.10) predicts that a plot of In pw against In w should yield a straight line 
upon which is superimposed a periodic amplitude of period In h F ,  and referring to 
figure 3 we see that this is indeed the case. This plot was obtained using a uniform 
density of In w points leading to a non-uniform density of w points and hence resulting 
in the resolution being non-uniform. Such periodicities do not occur when the lattice 
is translationally invariant because an arbitrary scaling factor b can be used. However, 

= t  
-8 -1 1 

I L 
I I 1 

-20 -1 8 -1 6 -1 4 -1 2 
In w 

3 

Figure 3. A In-In plot of the ferromagnetic spin-wave density of states against frequency 
n e a r w = O w i t h J , = l  andJ ,=O.  
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for non-random fractals the choice of b is fixed and oscillatory amplitudes are expected 
in the spectral properties (Niemeijer and van Leeuwen 1976, Bessis et a l  1983, Knezevic 
and Southern 1986, Maggs and Stinchcombe 1986, Southern and Knezevic 1987, 
Stinchcombe 1987). 

3. Antiferromagnetic spin waves on the Vicsek snowflake 

We now consider the situation where the sites of the Vicsek snowflake form two 
interpenetrating sublattices LZA and LZ5, the spins alternating from up to down on 
adjacent sites. Whereas in 9 2 it was only necessary to distinguish between two types 
of sites and two interactions it will be necessary in the case of the antiferromagnet to 
distinguish between four types of sites and three types of interactions. 

The linearised Heisenberg equation of motion for the transverse component S t  is 
now given by 

(3.1) 

(3.2a) 

(3.2b) 

As in the ferromagnetic case the decimation procedure consists of eliminating the 
interior twelve sites leading to renormalised parameters J: , J ; A ,  JLB, K L A ,  K K&A, 
Ki5. It is again convenient to define a set of dimensionless quantities which in the 
present case take the form 

(3.3a) 

(3.3b) 

(3.3c) 

(the recursion relations then take the form given in appendix 2 with the fixed point 
of interest now being ( X s ,  . . . , Z * , )  = (-3, -3, -6, -6, -1, -1). Although linearisation 
about this fixed point leads to an eigenvalue A A  = 15, the scaling field is quadratic in 
w to leading order (the linear terms cancelling) in contrast to the ferromagnetic case 
where to leading order the scaling field is linear in w. The dynamic exponent zA is 
thus given by zA = zF/2 =In 15/ln 9 leading to a spectral dimension of d, = In 5/ln 15. 

In figures 4 and 5 we show the antiferromagnetic spin wave DOS p A ( w )  and a In-ln 
plot again displaying the periodicities predicted by (2.10). We have found that the 
spectra obey the same scaling equations (2.6) as the ferromagnetic spectra with zF 
replaced by zA. 

4. Conclusions 

In conclusion, we have presented an exact calculation of the dynamic exponents zF 
and zA associated with ferromagnetic and antiferromagnetic spin waves on the Vicsek 
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Figure 4. The antiferromagnetic spin-wave density of states with J , ,  =JIB = 1 and J , ,  = 
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Figure 5. A In-In plot of the antiferromagnetic density of spin-wave states against frequency 
near w = 0 with J , ,  = J , ,  = 1 and J 2 ,  = J2B = 0. 

snowflake fractal and have found them to satisfy the relation zA = z,/2, a result which 
may be valid only for fractals with well defined sublattices. In addition, the excitation 
spectra pa  ( U )  were calculated explicitly for both ferromagnetic and antiferromagnetic 
spin-wave excitations on the same fractal and found to have the basic form p a ( @ ) -  
g, ( U (df/% - ' ) with g , ( w )  periodic in In w with period In A,. It is worth commenting 
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that for a regular Euclidean object, any one of an infinite number of scale factors b 
may be used when performing a decimation and hence an equivalent number of 
corresponding eigenvalues A, are possible, indicating that (2.10) has only the solution 
g o l ( w )  = constant. We would thus expect that a low-frequency plot of In p ( w )  against 
In w will yield a straight line of slope 1 - d/z, from which we may obtain the exponent 
z,. This situation is quite different for an exact fractal such as the Sierpinski gasket 
or the Vicsek snowflake where there is a discrete (fixed) scale factor b. In this case 
the periodicities in the amplitude prevent one from obtaining z, in the same way and 
so one is forced to employ a method based upon a fixed-point analysis as was described 
in this paper or alternatively a numerical scheme. 
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Appendix 1. Ferromagnetic recursion relations 

The recursion relations for the parameters X ,  Y,  and Z defined in 5 2 are given by 

(Al . l )  

(Al.2) 

2' = */@ (A1.3) 

where 

1 
( Q  - , q 2 - 4  

@ =  

(A1.4) 

(A1.5) 

(A1.6) 

and 

Q =  Y - 2 / ( X - Z )  

R = Z + 2 / ( X  - 2). 

(A1.7) 

(A1.8) 
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Appendix 2. Antiferromagnetic recursion relations 

The recursion relations for the parameters X A ,  X B ,  YA, Ye, ZA, and ZB are given by 

where 

and 
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